Evidential Reasoning with Landsat TM, DEM and GIS Data for Landcover Classification in Support of Grizzly Bear Habitat Mapping
Bosque Modelo:
Foothills
Temática:
Gestión forestal
Tipo de documento:
Artículo científico
Resumen
Multisource data consisting of satellite imagery, topographic descriptors derived from DEMs, and GIS inventory information have been used with a detailed, feld-based landcover classification scheme to support a quantitative analysis of the spatial distribution and configuration of grizzly bear (Ursus arctos horribilis) habitat within the Alberta Yellowhead Ecosystem study area. The map is needed to determine if bear movement and habitat use patterns are aVected by changing landscape conditions and human activities. We compared a multisource Evidential Reasoning (ER) classification algorithm, capable of handling this large and diverse data set, to a more conventional maximum likelihood decision rule which could only use a subset of the available data. The ER classifer provided an acceptable level of accuracy (ranging to 85% over 21 habitat classes) for a level 3 product, compared to 71% using a maximum likelihood classifier.
Información Bibliográfica
Autor:
Franklin, SE, DR Peddle, JA Dechka and GB Stenhouse.
Revista:
International Journal of Remote Sensing
Año:
2002
N°:
21
País :
Canadá
Páginas:
4633 - 4652
Volumen:
23
Idioma:
Ingles
Palabras claves
Model forest, Adaptatation, Grizzly, Impact